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Abstract  

Integrated stock assessments  consist of fitting  several sources of catch, abundance and  auxiliary  

biological  information  to  estimate  parameters  of  equations that describe  the population  

dynamics of fish  stocks. Stock assessments are subject  to  uncertainty,  and  it is a common  

practice  to  characterize  uncertainty  using  alternative hypotheses and  assumptions within  an  

ensemble of models  to  develop  scientific advice for fisheries management. In  this  context, there  

is the  need  to  assign  levels of plausibility  to  each of the combinations of factors that ultimately  

reflect  the  uncertainty  on  different  biological  and  fishery  processes. In  this  study, we  describe  

and  apply a model  diagnostic to  identify  trends in  process error in  recruitment deviation  

estimates  within  ensembles of integrated  assessment  models  of  tropical  tunas. We demonstrate  

that assessment model ensembles for tropical  tunas contain  distinct scenarios with significant  

trends in  process error  that are  overlooked,  with  the associated  implications for  fisheries  

management. Using  the Indian  Ocean  yellowfin  as  a case study, we found  that trends in  

recruitment deviates are linked  to  extreme productivity  scenarios which  strongly diverged in  

scale from  deterministic models  fitted without  recruitment  deviates. This  indicates that when  

recruitment  deviates  show  an  increasing  trend, these  can  compensate  for  the  loss  of biomass  in  

periods of high  catch  beyond  the surplus production. In  these  cases, variation  in  recruitment is  

not a  random  process, but  rather  takes the function  of a  compensatory,  systematic  driver in  

productivity.  Significant trends in  recruitment were positively  correlated  with increased  

standard  deviations  and  auto-correlation  coefficient,  non-random  residual pattern in  fits to  

abundance indices, and particularly  poor performance of the Age-Structured  Production  Model  

(ASPM) diagnostic.  We  suggest  that trends in  recruitment deviates  can  be caused by  

misspecification  of  the  biological  parameters used  as fixed values  in  integrated assessment  

models. The  process error diagnostic described here  can  provide a statistical criterion in  support  

for hypotheses  and  assumptions when using  ensembles  of models to  develop  fisheries  

management advice.  
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1.  Introduction  

In  ecology, resilience is defined as the ability  of an  ecosystem  or species to  resist and  recover  

from  a disturbance and  return  to  equilibrium  (Holling  1973;  O'Leary e t al.,  2017;  Pimm  1984). In  

fishery  science,  the productivity  of fisheries reflects  the capacity  of fish  stocks to  respond  to  

fishing  pressure and  overfishing  thresholds are  determined by  fish  life-history  traits  (Froese  et 

al.,  2021;  Murua et al.,  2017;  Wang  et al.,  2020;  Zhou  et  al., 2012)  and  fishing  selectivity  (Froese  

et  al., 2016;  Sampson  and Scott,  2011). The management  of fish eries is generally guided by  the  

output of fisheries stock assessments, which  estimates  the stock’s current and  historical  
exploitation  levels  and  maximum  productivity  and,  predicts  the  levels of  catch and  fishing  

mortality  that can  be sustained by  fish  stocks. Integrated  fishery  stock  assessment consists  of  

fitting  catch,  abundance and  auxiliary biological  information  into  fish  population  dynamics  

equations  using  specifically  tailored models and  computer software. The  biological information  

used in  stock  assessments  include growth,  reproduction  and  natural  mortality  that  constrain  the  

estimated  productivity  and  thus resilience of fish  stocks. In  general,  the knowledge of the  

underlying biological processes and life-history traits (e.g.,  fecundity, longevity,  maturation  and  

somatic growth) is limited  (Meador and  Brown 2015)  and  the forms and  values of these  

processes must be assumed. In  particular, highly influential, yet  difficult to  estimate  parameters  

such  as  natural mortality  (M) and  the steepness  of  the stock recruitment relationship  (h) are  

commonly assumed and  fixed in  age-structured  assessments, thereby  making  strong  

assumptions about stock’s  resilience, productivity  and  associated  biological  reference  points  

(Mangel et al., 2013;  Winker et al., 2020), with ass ociated  management implications.   

Three major sources of error can  cause structural and  statistical uncertainty  in  fisheries stock  

assessment (Francis and  Shotton  1997;  Fromentin  et  al., 2014;  Rosenberg and  Restrepo  1994): 

(i) observation  errors, directly  linked  to  the measurement accuracy  in  the data, (ii)  model errors,  

due to the limited ability of models to reproduce population dynamic patterns and, (iii) process  

errors,  due to  the inherent variability  of the processes  underlying  fish  stock dynamics or  

fisheries. Process  errors  usually  refers to  the  excess  of variation  that  cannot  be  represented by  

deterministic models;  they  are used in  stochastic models to  represent the variability  in  the data  

caused by  natural population  variation  (e.g. recruitment  strength, life  history  traits)  or  

unaccounted  variations (e.g  changes in  fisheries operations,  time-varying  catchability) beyond  

the deterministic expectation.  Structural  uncertainty  relates  to  alternative assumptions about  

functional relationships (e.g. growth,  selectivity  and  recruitment  functions),  fixed parameter  

values  (e.g. M  and  h),  data weighting, model structure (e.g.  spatial  and  fleet  structures).  To  

characterize the structural  uncertainty in fisheries, model ensembles are frequently considered  

for providing  advice based on  combining  the outcomes of  multiple model scenarios  (Jardim  et  

al. 2021).  

Tunas sustain  some of the world’s most valuable  fisheries and  dominate  global marine  

ecosystems (Juan-Jordá  et  al.,  2011). Over  the  recent  decades,  tuna fisheries  have intensified  

and  expanded  worldwide,  and  global catch  has steadily grown (Figure 1)  with th e development  

of industrial  purse  seine  fisheries,  which  has  placed  tuna fisheries management under pressure  

for timely  and  effective management (Allen  et al.,  2010;  Merino  et  al.,  2020). The major  

commercial  tropical tuna species  are  bigeye, skipjack,  and yellowfin  tuna, which  are among  the  

most productive species of  tunas, and  their assessments are carried  out using  integrated age-

structured fisheries stock assessment  models  such  as Stock Synthesis (Methot Jr and  Wetzel  

2013)  and Multifan-CL  (Kleiber et  al.,  2012).  

56 

57 

58 

59 

61 

62 

63 

64 

66 

67 

68 

69 

71 

72 

73 

74 

76 

77 

78 

79 

81 

82 

83 

84 

86 

87 

88 

89 

91 

92 

93 

94 

96 

97 

98 

99 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

105

110

115

120

125

130

135

140

145

In  the past, the stock assessments  of tropical  tunas used  the best available  information  to  fix key  

population  parameters in  a  base case  configuration. However,  recent stock  assessments  tend  to  

integrate results across alternative hypotheses of influential  parameters to  capture the full  

structural  uncertainty  in  the estimates and  in  the  management  advice.  In  the  assessments  of  

tropical  tuna  stocks  of 2019, 2020  and  2021,  the  structural  uncertainty  has  been  characterized  

using  ensembles of models with factors  such  as  the steepness  of  the  stock-recruitment  

relationship, variability  in  recruitment,  natural mortality, growth, longevity,  fishing  gear  

selectivity  and  weighting  of different  data sources (Merino  et  al.,  2021). Different options for  

model assumptions  are  combined in  a  model  ensemble and  each  models’ result is  averaged  
using  statistical techniques (Walter et  al., 2019;  Winker and  Walter 2019)  to  obtain  probabilistic  

estimates of stock status and productivity  to develop  management advice.  

The use of the ensemble or grid  approach  has raised discussions on  the associated plausibility  

of each factorial combination  of hypotheses, factors, and  scenarios (Maunder  et  al., 2020). 

Recently, specific diagnostics have been compiled to  evaluate  the convergence, consistency, and  

prediction  skill  of  integrated  stock  assessments  and  to  help  model development  and  selection  

(Carvalho  et al.,  2021). Specifically,  these diagnostics evaluate  (i) model convergence, (ii)  

goodness of fit to  the data by  analysing  differences between estimated and  observed quantities  

(residuals) (Wald  and  Wolfowitz 1940), (iii) model consistency  by  identifying  the influence of the  

different sources  of information  in  the likelihood  component (Ichinokawa et  al.,  2014)  and  

retrospective  analyses (Brooks and  Legault  2016)  and, (iv)  prediction  skill  by  checking  that  

predictions  are  consistent  with  future  reality  conducting  hindcasting  by  adding  steps  of  

projection  to  retrospective  fits  (Kell et  al.,  2021). These  diagnostics  have been  used to  develop  

tuna stock  assessments under the  grid  approach  (Urtizberea et  al., 2019)  but  it  is  

computationally  intensive and  time consuming  to  run  all  diagnostics (in  particular  retrospectives  

and  hindcasting) for  all  model configurations in  a large ensemble.  Therefore, it is common  to  

evaluate diagnostics for a  reference case or diagnostic case configuration  to  help  model  

development (Fu et al., 2021), or in a subset of models ( Minte-Vera et  al., 2020; Xu et al., 2020)  

and  is only  seldom  the case where  diagnostics are  used to  select  or  weigh  all  models of  the  

reference grid used to develop management advice (Castillo et al.,  2021; Maunder et al., 2020).  

Alternative model assumptions lead  to  various extents of model misspecifications,  where  model  

specification  is the difference between  the model and  reality. It follows that all  model are  

somewhat misspecfied, but some are  more  parsimonuos and  useful  for advice than  others  

(Carvalho  et  al.  2021). Examining  residuals pattern  of  the fitted  observation  is  commonly  

considered  one of the first step  for identifying  model misspecification. For  example, poor model  

fits can  be detected by  either the magnitude of the residuals being  larger than  expected or  

trends in  residuals.  However, in  stochastic models, model misspecification  is likely  to  cause  

additional process error  and  systematic  trend  in  the process  deviations,  which  provides  the  

model with additional flexibility  to  compensate  for misspecification  in  system  dynamics in  the  

fits to  the observations. As such, process error  deviations may  also  serve  as “sink”  of  
unaccounted  time-varying  processes and  latent model misspecifications. Diagnosing  the  

statistical properties of the  recruitment deviates appears to  have been  somewhat overlooked  

as a potentially  critical aspect in  the diagnostic toolbox  model for integrated  assessment models  

(Carvalho  et al.  2021). However, a  diagnostic approach that builds on  a  similar principle is the  

use of a deterministic age-structured production  model (ASPM) for evaluations  against a full  

stochastic model implementation  with respect to  scale and  the production  function  (Maunder  

and  Piner 2015;  Minte-Vera et al.  2017). The  ASPM  approach  has also  shown promising  
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146 performance in  simulation-testing  for detecting  misspecification  the population  dynamics  

(Carvalho et al.  2017).   

Fish populations have  been  shown to  exhibit large variation  in  recruitment  about the assumed  

relationships between  spawning  stock biomass (Mertz and  Myers, 1996;  Rose  et  al., 2001;  

Thorson  et al.,  2014). Integrated  models are therefore commonly  configured in  a way  that  

recruitment  variation  is  main  (or  only)  source  of  process variation. It  is  common  to  model  

recruitment  as a  random  deviation  from  a stationary functional relationship  between  the  

spawners and  subsequent recruitment (Sharma et al.,  2019). Recruitment deviates are usually  

considered  to  originate  from  a random  lognormal process with a  mean zero  constraint around  

a log-bias adjusted  stock-recruitment curve (Methot  Jr and  Wetzel 2013). The assumption  of a  

lognormal  distribution  has  been  supported by  empirical evidence (Allen 1973), as  well as  

biological  realism  (Hilborn  and  Walters  1992;  Quinn  and  Deriso  1999).  A  theoretical justification  

for the use of this error distribution  is that survival from  spawning  to  recruitment can  be  

considered  as  the combined  effect  of a s  eries  of in dependent environmental  factors that   affect  

mortality  during  early life stages (Walters and  Ludwig 1981). This interpretation  of the lognormal  

error  as  arising  from  a  combination  of  multiple  environmental effects implies that  the  

recruitment can  be occasionally  very  large when most environmental conditions are favourable,  

and  that  the  variance  of recruitment will increase as  the expected  stock  size  and  recruitment  

increase  (Hightower  and  Grossman  1985). The most  common  approach to  estimate recruitment  

variations remains  probably  maximizing  a penalized likelihood  by  fixing  an  assumed standard  

deviation  in  recruitment (but see  Thorson  2019  for  alternative methods), which  penalizes the  

likelihood  if  the average  the  recruitment  deviates  exceed  the  assumed  variation  about  the  stock-

recruitment relationship. A bias-adjustment approach  is often implemented to  ensure that the  

expected recruitment in each year is equal to  the stock-recruit relationship (Cordue, 2001).  The  

implicit model assumptions of this are therefore that recruitment variation  is stationary and  is  

less likely  to  exceed an  upper process error threshold given  by  fixed marginal recruitment  

standard  deviation  (sigmaR), for  which  plausible  values may  also  be  informed  from  meta-

analyses (Thorson  et al. 2014; Thorson 2019).    

This study  specifically  focuses on  potential model process  error  diagnostics  of recruitment  

deviation  estimates in  integrated  assessment  models. We explore the trends in  recruitment  

deviates of alternative model  configurations within  ensembles of models and  illustrate  their  

patterns in  response to  different hypotheses based on  life-history  assumptions. We  developed  

a diagnostic  tool  to  objectively  evaluate different model scenarios  and  provide statistical criteria  

for model  selection  by  identifying  the least  plausible models  from  an  ensemble.  For this, we  run  

numerical  experiments using  the most recent  Stock  Synthesis  model  of  Indian  Ocean yellowfin  

tuna (Fu  et  al.,  2021).  The  analyses include  (i)  assessing  the hypothesis of no-trend  in  recruitment  

deviates, (ii) comparing  with  equivalent  scenarios  without recruitment  deviates,  (iii) comparing  

the probability  of no-trend  hypothesis with diagnostics developed for integrated  stock  

assessment  models (Carvalho  et al.,  2021)  and, (iv)  simulating  bias  in  natural  mortality  and  

growth  parameters within  a stock assessment carried  out using  simulated data. We then  

evaluate evidence of process error  trends  in  the  assessments of  tropical  tunas  across ocean  

basins.  

 

2.  Material and methods  

2.1 Data  
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191 The data used for our  analyses  includes  files  of the Indian  Ocean  yellowfin  and  other  tropical  

tuna stock assessments. Yellowfin  tuna supports the most valuable tuna fisheries in  the Indian  

Ocean, with catches currently  exceeding  400,000 t annually. The stock is harvested by a diverse  

range of gears, from small-scale artisanal fisheries to large gill netters, industrial longliners, and  

purse seiners,  with the western  tropical  region  being  the core area of  the fisheries’ distribution.  
The stock is currently determined to be overfished and subject to a building plan  (IOTC, 2021).  

The yellowfin  tuna  stock  is  assessed  using  an  age  and  spatially structured Stock Synthesis model  

that incorporates spatial recruitment and  movement  dynamics and  accounts for the different  

regional exploitation  pattern  (Fu  et  al.  2021). The  data available for assessing  the stock include  

time  series of  the  total catch, standardised  CPUE indices, observations of  length  compositions,  

and  tagging  recaptures data. CPUE  are the primary  source of  information  on  abundance and  are  

based on  a regionally  stratified  index  for adult fish  from  the main  distant water longline fleets,  

and  a region-specific  juvenile  index  from  the European Union  purse seine  fleets. The  length  

composition  data  are considered sufficient  to  provide reasonable  estimates of fishery  selectivity  

and  recruitment trends but not stock abundance trends. Tag-release and  recovery  data collected  

from  the main phase  of the Indian Ocean large-scale tuna tagging programme inform  estimates  

of mortality, abundance,  and  movement. The Indian  Ocean  yellowfin  assessment has  

established  a model ensemble of 96  models to  capture a range of uncertainties arising  from  

assumptions on  biological  parameters, data weighting, and  model configurations:  1) three levels 

of steepness (0.7 (h70), 0.8 (h80) and  0.9  (h90));  2) two growth  curves (Gbase  (Fonteneau 2008)  

and  GDortel  (Dortel et al., 2014));  3) two  natural mortality  options (Mbase  and  Mlow), 4) two  

spatial configurations (io  and  sp), 5) two  assumptions about the effect  of piracy  in  longline  

catchability  (q0  and  q1)  and, 6) two  weighing  options for tagging  data  (low weight  

(tagLambda01) and full weight (tagLambda1)).  

As for  the Indian  Ocean yellowfin, the assessments of the other tropical tunas are also  carried  

out using  integrated statistical  assessment  models  (Methot  Jr and  Wetzel 2013; Kleiber et  al.,  

2012). For all  cases, an  ensemble of models is used to  develop  scientific advice for management  

and  characterize structural  uncertainty. The  files  of  these  assessments have  been compiled to  

estimate  the trends of the recruitment deviates. Our analysis on  the Indian  Ocean  yellowfin  is  

shown  throughout the main  manuscript and  we also  provide an  overview  of trends in  

recruitment deviates from  all tropical tuna stocks as Supplementary  material.  

2.2 Analysis of trends in recruitment deviates  

Process error in  Stock Synthesis is typically  implemented  as a multiplicative lognormal error  

component applied to  the stock recruitment relationship  (equation  1). Recruitment (R) is  

defined as the expected  number of recruits from  a Beverton-Holt spawner-recruitment  curve  

multiplied with  a bias-adjusted log-normally distributed random  recruitment deviation.  

4ℎ𝑅 𝑆𝑆𝐵  2
𝑅𝑡 = 0 𝑡 𝑒(𝜀𝑦−0.5 𝜎𝑅 )     ; 𝜀𝑡~𝑁(0, 𝜎2

𝑅 )   [equation  1]  
𝑆𝑆𝐵0(1−ℎ)𝑆𝑆𝐵𝑡(5ℎ−1) 

where  𝑅𝑡  is  the number of recruits at time t, 𝑆𝑆𝐵𝑡  is the spawning  stock biomass, ℎ  is the  

steepness of the spawner-recruitment and  𝑅0  is the estimable parameter for the expected  

recruitment of the unfished  stock biomass 𝑆𝑆𝐵0.  The process error term   𝜀𝑡  represents the 

recruitment variability  after accounting  for  the stock recruit relationship  given  the marginal  
 variance of recruitment deviations 𝜎2

𝑅  (Johnson  et al. 2016).  
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233 The recruitment deviates of the  main  data period  (years of the assessment  with  abundance  

indices and/or  size compositions that are assumed to  be informative)  have been  extracted  from  

Stock  Synthesis  files  using  r4ss  (Taylor  et  al.,  2021)  a  package  that contains  a collection  of  R  

functions (R_Core_Team  2021)  for interacting  with  Stock  Synthesis.  The statistical analysis  has  

consisted in  validating  the hypothesis that there is no  temporal  trend  in  recruitment deviates.  

For this, we  applied the Student’s t-test  using  the R package funtimes  (Lyubchich et  al.,  2022).  

The notrend_test  function  includes a combination  of time series  trend  tests to  verify  the null  

hypothesis of no trend, versus the alternative hypothesis of a linear trend (Student’s test).  

 

2.3 Comparison  to deterministic model  runs without recruitment deviates  

The aim  of these runs is to  evaluate  whether  the  population  dynamics are  driven  by  the  

underlying  production  function  estimated  by  the model, or by  trends in  process error (i.e.,  

recruitment deviates).  We  compare the models from  the stock assessment ensemble of Indian  

Ocean  yellowfin  with and  without  recruitment  deviates. The  production  function  represents  the  

changes of  yield  over the  range  SSB from  0  to  SSB0  and  its  maximum  corresponds to  the  

Maximum  Sustainable Yield  (MSY).  A key  scaling  parameter for the biomass is  the estimable  

parameter of the unfished  recruitment  R0. The relative productivity  of the stock with respect  to  

MSY is governed  by  the spawner-recruitment function, somatic growth,  fecundity, natural  

mortality  and  fishery  selectivity  and  can  therefore be  to  a large  extent predetermined by  the  

choices  about functional relationships and fixing population parameters (Winker et al. 2020).   

If the assumed production  function  is supported by  the data, it  can  be hypothesised that the  

estimated  maximum  sustainable productivity  (MSY) and  scale (R0) are similar  between the  

model fits  with and  without recruitment deviates. The hypotheses of this analysis are  

comparable to  the Age  Structured Population  Model  (ASPM) diagnostic (Maunder and  Piner,  

2015;  Minte-Vera et  al.  2017;  Carvalho  et al., 2021), with the difference that all  available data  

sources are used to  fit the model, including  abundance indices, tagging  and  size frequency  data.  

To  implement the deterministic models, we  re-run  all models within  the ensemble for Indian  

Ocean  yellowfin  without recruitment deviates, by  deactivating  the recruitment deviates’ option  
in  the Stock Synthesis control file (i.e. fixing  the recruitment deviates to  zero). The difference  

between the full  stochastic models  and  their  deterministic  implementations was done by  

computing the percentage differences for MSY and R0.  

 

2.4 Comparison of process error trends with standard  model diagnostics  

A flowchart for model development and  selection  has been used to evaluate model plausibility  

using  diagnostic  criteria for  model  convergence, goodness of  fit,  consistency  and  prediction  skill  

(Carvalho  et al.,  2021). To  conduct a  comparative analysis with the trends process deviations,  

we  applied selected key  diagnostic tests to  the model ensemble of Indian  Ocean  yellowfin  (Table  

1) that  can  be  can  relatively  straight forward  for automated  large ensembles using  the R  

packages r4ss  and ss3diags  (https://github.com/JABBAmodel/ss3diags). These  included runs  

tests  to  evaluate  the  randomness in  the fits to  the CPUE indices as  a goodness  of fit  criterion,  

the ASPM  diagnostic to  evaluate  consistency  between the CPUE trends and  the production  

function  with respect to  productivity  (MSY)  and  scale  (R0) (Maunder  and  Piner, 2015;  Minte-Vera  

et  al.  2017),  retrospective  bias (Mohn’s   ; Mohn’s  1999;  Hurtado-Ferro  et al.,  2015)  and  the  

Mean Absolute  Scaled Error (MASE) as  a measure of prediction  skill  using  hindcast cross-
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277 validation  of the  observations form  the  four common  joint CPUE indices (Kell  al.  2021),  following  

the procedures described  in  Carvalho  et  al.  (2021).  In  addition, we  also  evaluated  two  additional  

process error measures  in  the form  of the realized marginal standard  deviation  of recruitment  

deviates and  the  first  order auto-regressive (AR1) autocorrelation  coefficient of recruitment  

deviates (Johnson  et al. 2016) at an  annual time step interval across scenarios.  

The p-values for  the residual runs tests were computed for each of the  four joint CPUE indices  

that are common  in  all  models. The p-values were  then combined into  a single test  statistic  using  

Fisher's method  (equation  2):  

2 𝜒2𝑘 = −2 ∑ log (𝑝𝑖)         (equation  2) 

where  𝑝𝑖  is the  p-value  for CPUE  index  i and  k are  the  degree of  freedom  of the four p-values  

from joint CPUE indices.  

Retrospective analysis and hindcast cross validations were based on  sequentially  removing  five  

years with data, whereas the hindcast then used one-year ahead predictions to  compute the  

MASE  (equation  3). The MASE was  computed  as  a  combined across  all  four  joint CPUE  indices  

and four seasons, such that:  

1 
∑ |𝑦̃ ,𝑠,𝑡−𝑦

   𝑖 𝑖,𝑠,𝑡| 
𝑀𝐴𝑆𝐸 = ℎ

1                    (equation  3)  
∑ |𝑦
 𝑖,𝑠,𝑡−𝑦𝑖,𝑠,𝑡−1| 

ℎ

 

where 𝑦̃𝑖,𝑠,𝑦  is the one-year-ahead forecast of the expected  value for the of the log(CPUE)  

observation  of index i, in  season  s, and  year  t,  𝑦𝑖,𝑠,𝑡  is the corresponding  observed value, 𝑦𝑖,𝑠,𝑡−1  

is the log(CPUE) observation  from  the previous year and  h  denotes the number of hindcasting  

annual retrospective hindcasts steps  for which  forecasts 𝑦̃𝑖,𝑠,𝑦   were made  to compare with the  

observations 𝑦𝑖,𝑠,𝑡  (c.f. Carvaho  et  al.  2021). The numerator  therefore represents the mean  

absolute  error (MAE) of a  total  of  80  prediction  residuals (4  indices  ×  4  seasons × 5  hindcasts)  

and the corresponding denominator the MAE of 80 naïve prediction residuals.   

[Insert Table 1]  

 

2.5  Experiment with yellowfin operating model  

The aim  of this experiment is to  reproduce trends  in  recruitment deviates by  intentionally  

producing  bias in  natural mortality  and  growth  parameters. For this, we  use data generated from  

an  operating  model (OM) developed for Indian  Ocean  yellowfin  (Dunn  et al., 2020)  and  develop  

a grid  of Stock  Synthesis models  defining  a range of natural mortality  and  growth  parameters  

relative to  the  true  values  from  the OM. The  hypothesis is that  under the assumption  of data  

with random  error, the use of scenarios with biological parameters  that deviate from  the true  

value will produce recruitment  deviate  trends comparable to  the  trends observed in  the stock 

assessment.  

The spatially explicit  OM of  the  tropical tuna p opulation  was implemented by  the Indian  Ocean  

Tuna Commission  as  a proof of  concept for  evaluating  potential  stock  assessments performance  

(Dunn  et al.,  2020).  The OM  development  focused  on  the  yellowfin  as  a  case  study  based on  

data availability  and  management priorities. The operating  model was conditioned on  a range  

of  spatially  explicit observations (usually  at 5  x 5  latitude  and  longitude grid), including  
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317 commercial  catch,  catch rates,  length frequency,  and  tagging  data  using  maximum  likelihood  

estimation,  and  incorporated  population  processes such  as recruitment, growth, maturity,  

spawning, movement, and  fishing  at relevant spatial  and  temporal  scale in  accordance with  

biological  and  fishery  characteristics of the yellowfin  tuna stock. In  particular, the OM  

implements  and  estimates  movement  dynamics  using  preference  functions based on  spatially  

discrete  environmental  layers. Subsequently  fine  scale randomised observational data for  size,  

catch  per unit  of  effort (CPUE)  and  tag recoveries  generated  from  the OM  were  reformatted  and  

fitted by  a Stock Synthesis model equivalent to the  2021  IOTC yellowfin s tock assessment.  

 

3.  Results   

3.1 Catch of tropical tunas  

Tropical  tuna fisheries  developed after the 1950s,  and  in  the early  years,  mainly  consisted of  

longline fleets targeting  bigeye  and  yellowfin  tuna. In  the 1980’s, the purse  seine fisheries rapidly  

developed and  increased  the catch  of tropical tunas worldwide, reaching  their maximum  total  

catches  between 1990  and  2010.  The  catch of  Indian  Ocean yellowfin  is  currently  near its  historic  

maximum  levels, likewise the Atlantic and  Western Pacific stocks (Figure 1). The four skipjack  

stocks are currently  at their historical  maximum  levels of catch  whilst the catch of the four bigeye  

stocks has decreased in the recent years.  

[Insert Figure 1]  

 

3.2 Analysis of trends in recruitment deviates  

The recruitment  deviates and  trend  analysis  of  the 96  models  included  in  the reference  grid  of  

the 2021 assessment of Indian Ocean yellowfin tuna are shown in Figure 2  (p-values for the no-

trend  hypothesis in  Table  2). Black  dots and  lines  represent  scenarios  where  the  hypothesis  of  

no  trend  is verified  and  no  trend  in  process error is detected (p-value > 0.1) and  pink  and  blue 

lines and  dots represent scenarios  where a  trend  in  recruitment deviates is d etected  (p-value  < 

0.1). Pink  dots and  lines represent scenarios  with an  increasing  trend  in  recruitment deviates  

and blue dots and lines represent scenarios with a decreasing trend.  

[Insert Figure 2]  

We  detected trends in  recruitment  deviates in  41  of the 96  models  (43%). From  these, 5  show a  

decreasing  trend  (the average recruitment deviates of the first period  are larger than  in  the  

second  period)  and  36  display a positive trend  (larger recruitment deviates in  the second  part of  

the data series, where the catch  of yellowfin  is higher). 23  of  the 24  models (96%)  that  use the  

low natural mortality  option  and  GDortel  growth  combined display  an  increasing  trend. 32  of  

the 48 scenarios  with low natural mortality  option show an increasing trend (67%). 27  of the  48  

scenarios  with the  GDortel  option  also  show  an  increasing  trend  (56%). The scenarios with a  

decreasing  trend  are  all  using  the base  growth  and  base mortality  options  combined with  the  

tagging-data downweighed  option. The models that obtain  a p-value of more than  0.8 (9  models, 

9.4%), include at least once all  the  values of  the factors included in  the uncertainty  grid  (two  

growth  options, two  natural mortalities, three steepness values, two  spatial configurations, two  

assumptions on tagging data and two hypotheses on  the impact of piracy).  
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358 Figure 3  shows the relation  between  the p-value of the no-trend  hypothesis  and  the range  of  

the productivity  of the  stock (MSY)  as  estimated by  the assessment models. P-values lower than  

0.1 correspond  to  values of  MSY lower than  350,000  tons (pink, increasing  trends in  recruitment  

deviates)  and  larger than  400,000  tons (blue, decreasing  trend  in  recruitment  deviates). The  

scenarios  with  particularly  high  probability  for the lack of trend  in  recruitment deviates (p-

values>0.8)  also  correspond  to  the range of MSY  between 350,000  and  400,000  tons. The  

scenarios in  the lowest  left side of the figure (20  out of 96  models, 21%)  display a very  low  

probability  for  the  no-trend  hypothesis p-value<0.01  and  MSY  values estimated  at 310,000  tons  

or less (average MSY for these  20  models is 286,974  tons). All models with a p-value>0.1  

estimate  MSY  values larger than  314,507  tons. The Indian  Ocean  yellowfin  catch  reached  

323,688  tons for  the  first  time  in  1992  and  has  remained above  thereafter (except for 1999,  with  

277,771  tons) (Figure 1). The average catch since 1992  has  been  382,064  tons.  In  the last  20  

years (2000-2020),  the average catch of y ellowfin  tuna has been  401,999  tons (40% larger than  

the average  MSY estimated  by  the 20  models  with p <0.01). The highest  estimated  MSY  value  is  

468,488  tons with a model  that displays a p-value of 0.012. The second  largest  estimated  MSY  

is 463,968  tons and its model displays a p-value of 0.199.  

[Insert Figure 3]  

 

3.3 Comparison  to deterministic model  runs without recruitment deviates  

Figures 4, 5, 6  and  7  show the differences  between the  estimated  quantities (MSY,  R0  and  B/BMSY) 

between the  stock  assessment  scenarios (SA) and  the equivalent runs with the recruitment  

deviates option  deactivated, i.e. without process error (RecDev0). The models identified with  

the lowest  p-values and  lowest estimated  MSY (Figure 3) are also  the models that display the  

largest  differences  in  the estimated  MSY with their  equivalent  models  without recruitment  

deviates (lower MSY in  the  stock assessment than  without recruitment deviates), reaching  a -

30% difference  or more  for  7  models (7%),  -20%  or  more for  17  models  (18%) and  -10%  or  more  

for 49  models (51%)  (Figure 4). The models  that  estimate larger MSYs  than  their equivalents  

without process error are also  associated with p-values<0.1 (blue points). Two  models (2%)  from  

the stock assessment grid  estimate  MSY 10% larger  or more than  their equivalents without  

recruitment deviates. The models with the highest  p-value for the no-trend  hypothesis show  

differences of less than 10% with their equivalent model runs without recruitment deviates.  

[Insert Figure 4]  

Figure 5  shows that the models identified with the  lowest  p-values and  lowest and  highest  

estimates  of  MSY  are the models with largest  differences  on  R0  compared  to  their equivalents  

without  process  error.  The  inverse  relation  between  p-value and  differences  between models  

with and  without  recruitment deviates  is  even  more  compelling  for  R0  than  for  MSY. The  models  

with the  largest  p-values  obtain  very  similar estimates of R0  with and  without recruitment  

deviates. 11  models from  the stock assessment reference grid  (11%)  estimate  R0  30% or  more  

lower than  their equivalents without process error, 18  estimate  R0  20% or lower (19% of models)  

and  40  models  10%  or  lower (42%).  One model from  the stock  assessment grid  estimates R0  20%  

larger or more than  its equivalents without deviates  (1%) and  12  models (12.5%)  estimate  R0  

larger than  10% or  more.  

[Insert Figure 5]  
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401 Figures  6  and  7  show the differences in  relative biomass (B/BMSY) estimated with  and  without  

recruitment deviates. Figure 6  shows the two  trajectories for each single scenarios of the  

reference grid. The  scenarios with large  p-values  for the no-trend  hypothesis show similar  

overall  trends between the  models  with  and  without rec  devs  (e.g. 

GDortel_Mbase_h80_IO_q1_TagLambda01  [8th  column, 1st  row]) and  the models  with very  low  

p-value (e.g. GDortel_Mlow_h70_Sp_q2_TagLambda01  [11th  column,  7th row]  and  

Gbase_Mbase_h90_Sp_q1_TagLambda01K  [3rd  column, 5th  row]) show  a  marked  difference  

between the  two model  trajectories.  In  general,  the trajectories  from  the models without  

recruitment  deviates (dashed lines)  elapse  above  the trajectory  from  the  stock  assessment  

models with low p-values  (blue and  pink).  Figure 7  shows  that  as  with  the  differences  between  

MSY and  R0, the models  with lowest  p-values display large differences  between  estimated  

relative biomass. The  differences  in  relative  biomass between models  with  and  without  

recruitment deviates reach  30% or  more  for 12  models (12.5%), 20% or  more  for 22  models  

(23%)  and  10%  or  more for 43  models (45%). The models with the highest p-values estimate  

relative biomass differences of less than 10%.  

[Insert Figure 6]  

[Insert Figure 7]  

 

3.4  Comparison of process error trends with standard  model diagnostics   

Table 2  shows the results  of the  diagnostics used to  evaluate  plausibility  of the different  models  

and  Figure 8  shows the values of the different diagnostics for models identified or not with a  

trend  in  recruitment deviates. Figure 9  shows the correlation  of diagnostics  with the probability  

of no-trend  in  recruitment  deviates  hypothesis.  Overall, the  models  identified  with trends in  

recruitment  deviates  are linked  with autocorrelated  deviates,  with  higher variance, with  larger  

differences  between MSY and  R0  estimates relative to  their ASPM  models’  and, poorer scores in  
runs test of residuals of fit. Trends in  recruitment deviates appear independent  of MASE and  

retrospective performance  (Mohn’s  ). Consequently,  the p-value is negatively  correlated with  

differences on  the MSY (-0.67) and  R0  (-0.63) estimates between  the stock assessment and  the  

ASPM  models.  This  means that the largest p-values  of  the  no-trend  hypothesis are linked  with  

lower differences  between  stock assessment  models  and  equivalents  using  catch  and  effort  data  

only and  without recruitment deviates. The p-value is also  negatively  correlated  with the  

standard  deviation  (-0.39) and  autocorrelation  of recruitment deviates (-0.38). Additionally, the  

p-value is positively correlated  to  the runs test  (0.21).   

[Insert Figure 8]  

[Insert Figure 9]  

[Insert Table 2]  

 

3.5 Experiment with yellowfin  operating model  

Figure 10 shows the estimated recruitment deviates for a model that uses  data generated from  

a simulated OM (Dunn  et  al., 2020). This experiment suggests that  natural mortality  needs to  be  

reduced or  increased by  90% (M010  and  M190) to  produce a trend  in  recruitment deviates. As  

with the stock assessment,  models with recruitment deviate trends are associated with lower  
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443 (pink) and  higher (blue)  MSY than  their equivalent without deviates (Figure 11). The differences  

in  MSY between models  with  and  without recruitment  deviates ranges between  -19% and  +24%.  

The models  with higher p-value for the no-trend  hypothesis are also  the models with  the lowest  

differences between models with and  without process error.  

[Insert Figure 10]  

[Insert Figure 11]  

 

Discussion  

Our  results demonstrate  that the assessments of tropical tunas contain  trends in  process  error  

that are overlooked,  and  we  highlight that not  accounting  for this uncertainty  can  have  

important implications for stock management. We  show  that evaluating  trends in  recruitment  

deviates from  integrated  assessment models can  contribute  to  reducing  the  uncertainty  in  

fisheries’ stock assessment and  to  improve the  assessment of stock status. Trends in  recruitment  
deviates were correlated  with extreme (lowest  and  highest) productivity  scenarios and, with  

differences (up to  30% for Indian Ocean yellowfin  stock assessment models) in the estimates of  

model runs with and  without recruitment deviates. This indicates that when  recruitment  

deviates  show an  increasing  trend,  these  can  compensate for the loss of biomass in  periods of  

high  catch  beyond  the surplus production.  When  this happens, the process  error is  not a random  

component that describes  the variability  in  the  population  trends  as  driven  by  fish productivity  

and  fishery  dynamics  but,  it is identified to  be one  of the processes that  drive  the general  

population  trend  in  the form  of the underlying  stocks’ response to  fishing  pressure. Trends  in  
recruitment deviates can  be caused by misspecification  of biological  and  other parameters and  

suggest incompatibility  of model assumptions with the data.  

The misspecification  of key  parameters or assumptions in  integrated stock assessment models  

can  strongly  impact the scientific advice  for  fisheries management  (Carvalho  et  al.,  2021;  Mangel  

et  al.,  2013). When   using  integrated models, numerous decisions  are required  such as whether  

the models appropriately  fit the  data,  if the optimization  has  been  successful, if  estimates  are  

consistent retrospectively  and  if the model is suitable to  predict a stock’s future response to  
fishing  (Carvalho  et  al.,  2021). During  the development of integrated models,  analysts  evaluate  

performance from  likelihood  profiles, the residuals between estimated  and  observed quantities,  

retrospective analyses, and  other methods. This process allows for deciding  between  modelling  

options, parameters and  selecting  or discarding  specific model assumptions.  However, this  

evaluation  of diagnostics  is time-consuming, especially  when large ensembles of models are  the  

preferred option  to  characterize structural uncertainty. In  cases where the factors of  

uncertainty,  assumptions and  the configuration  of models are decided during  time-limited stock  

assessment  meetings,  developing  a full  set  of diagnostics  becomes inviable. Producing  near-

term  advice  when  time pressure is severe and  uncertainty  looms can  lead  to  decisions  guided  

by  priors  without  statistical  support  (Schuch and  Richter 2021).  Evaluating  trends in  recruitment  

deviates from  stock assessment  output  files  is a relatively  straightforward  and  quick task that  

can  help  identify  model  assumptions  that  are  incompatible with the available  observations  and  

thus providing an additional  statistical method for model selection in a timely  manner.  

Figures 2  and  3  demonstrate  how positive recruitment deviates are accumulated  in  the recent  

period  of the assessment models that estimate productivity  levels significantly  lower than  the  

recent  catch  history. This suggests that  recruitment deviates are an  intrinsic factor that  is part  
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487 of the  response  to  the high  catch  in  the  recent  years  and  that  the  recent  catch history  would  not  

be possible without them. It would  be expected  that fish stocks with a maximum  productivity  of  

40% below  the average catch of  the  last  30  years would  have  collapsed  but instead, the  positive  

trend  in  recruitment deviates prevents  it. However,  when running  deterministic projections  

forward  using  the stock recruitment relationship  without recruitment deviates,  these  models  

collapse in  a  short period  of time unless catch is drastically  reduced. When models with a  

decreasing  trend  in  recruitment  deviates are projected  without  deviates,  the fish  stock increases  

rapidly because the recruitments from  the stock recruitment relationship  are larger than  the  

recruitments estimated for the  recent period. This causes large  uncertainties in  the  

management  advice  derived from  forward  projections that  omit  recruitment  deviates (Figure  

12),  as observed in  the advice provided using  the  2021  stock assessment of  Indian  Ocean 

yellowfin  (Urtizberea et  al.,  2021). Regardless of the identification  of trends in  recruitment  using  

threshold  p-values  for the no-trend  hypothesis,  we recommend  that projections  carried out  to  

provide management advice based on  stock assessment models be developed  using  recent  

recruitment deviates for models showing appropriate  diagnostic values.  

[Insert Figure 12]  

The case  of  Indian  Ocean yellowfin  is a compelling  example  because the grid  used for advice  in  

2021  covers a wide range  of  options  for biological  parameters  and  assumptions. However,  

trends in  recruitment deviates  are also  identified in  other tropical  tunas’  assessments  
(Supplementary  Information). Indian  Ocean skipjack  assessment  (Figures  SI1A  and  SI1B) displays  

decreasing  trends in  4  of 24  scenarios (17%), all  associated with the largest productivity  levels  

estimated  in  the grid  of models used for management advice. The Indian  Ocean  bigeye  

assessment (Figures SI2A  and  SI2B) doesn’t have any  model with a  p-value of less than  0.1  for  

the no-trend  hypothesis but neither model with a p-value larger than  0.68. In  the Atlantic, there  

are two  stock assessments carried  out with integrated  models. The Atlantic bigeye assessment  

(Figures SI3A  and  SI3B)  includes 17  cases from  the reference grid  of 27  models with increasing  

trends (63%)  associated  with  the lower  range of MSY estimates. There is  no  recruitment deviate  

trend  identified in  the four  models of the Atlantic yellowfin  assessment reference grid  (Figures  

SI4A  and  SI4B). In  the Eastern Pacific, there are two  tropical  tunas assessed  using  integrated  

models. The lowest p-values for the no-trend  hypothesis (13  of 44 models, 29%)  correspond  to  

the lower  and  higher tails of the MSY estimated  in  the reference  grid  for Eastern  Pacific  bigeye  

(Figures SI5A  and  SI5B), and  for most models the null  hypothesis was not rejected. For Eastern  

Pacific yellowfin  (Figures SI6A  and  SI6B), a significant  number of models display  a recruitment  

deviate trend, and, in  all  cases,  this  is negative (26  of 48  models,  54%)  and, 12  of  them  are  

associated  with MSY  estimates well  above  the  largest  historical  catch  of  this  stock  (443,458  tons  

in  2002)  and  also  the recent catch (average 2000-2020  is 261,165  tons). When  interpreting  

results for the WCPO stocks, consideration  should  be taken of the specific approach  used to  

estimate  recruitment in  a  spatially  structured assessment model. Within  MULTIFAN-CL  the  

spatial distribution of recruitment can be allowed to vary in time such that recruitment by time  

period  in  each region  is estimated somewhat independently.  Subsequently,  and  by  design  in  the  

terminal assessment phase, an  overall  stock recruitment relationship  is fitted with a weak  

penalty term  so  as  not  to overly  influence  the recruitment  estimates,  with the express purpose  

of estimating  equilibrium  management  quantities such  as  MSY. This  equilibrium  calculation  is  

based upon  a  single  region  approximation, with  overall  recruitment,  no  movement,  and  

averaged  fishing  mortality  over a  specified period. The assessments of Western  Central  Pacific  

bigeye (Figures SI7A  and  7B) and  skipjack  (Figures SI9A  and  9B) display increasing  trends in  the  

majority  of  their  models (16  of  24,  67%  and  41  of  54,  76%  respectively),  linked  to  the lowest  MSY  
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534 estimates of each  of the ensembles. For Western Central  Pacific yellowfin  (Figures SI8A  and  8B),  

22  of  72  models (31%)  display a  decreasing  trend  and  these  models are not  linked  to  the highest  

estimated  MSYs seen  in  other stocks.  Overall,  except  for Western Central yellowfin  and  some  

models of East Pacific bigeye, increasing  trends (pink)  are associated with  the  lower tail  of M SY  

estimates and decreasing trends (blue) are associated with the higher tail.   

The relative roles of intrinsic and  extrinsic factors in  population  dynamics have been investigated  

in  ecology, and  ecologists have aimed at quantifying  the real drivers of population  dynamics  

(Ahrestani et  al.,  2013). In  fisheries, it  is  assumed that fish  stocks’  population  dynamics  are  
driven  by  natural mortality, growth  and  reproduction  as intrinsic biological  factors and, fishing  

as the main  extrinsic factor.  In  this context, the influence of variables  that  are not understood  

or that are  ignored  in  the  models are assumed to  be  random. To  elucidate if recruitment deviates 

represent  a  source of  variability, we  compared models with  and  without recruitment  deviates.  

In  the Indian  Ocean  yellowfin  assessment, with fixed growth, natural mortality  and  steepness,  

the model can only  modulate the R0  to estimate different levels of  productivity of the stock and  

fit the  available  data. Figures 4-7  show that when recruitment deviates are randomly distributed,  

the data and  model assumptions are used to  estimate the general trend  of the population  and  

its productivity  because model estimates are similar with and  without recruitment deviates.  

Instead, when there  is a trend  in  recruitment  deviates, there are large differences between the  

estimates  of models with  and  without recruitment  deviates,  which  supports  the idea that  

process error is  a factor that is driving  the dynamics of the population  and  not a random  variable.  

If trends were  detected  in  all  model configurations it might indicate a lack of identification  of  

the main drivers of the population. When this happens only in certain configurations of models  

it suggests implausible  combinations  of parameters. The  accumulation  of  positive  recruitment  

deviates in  periods  of  high  catch  could  be  due to  underestimation  of the mean productivity  of  

the stock  (e.g.,  unfished equilibrium  recruitment (R0)) and  alternatives,  such  as allowing  higher  

penalties on  recruitment deviates  or  estimating  recruitment deviates variability, may  need to  be  

investigated.  

Process  error and  recruitment deviates may  also  potentially  represent  the variation  in  the  true  

population  due to  factors  not included  in  the  equations  of  the stock  assessments  such  as  

environmental regime  shifts or  productivity  changes. For example, there  is evidence that  

environmental drivers such  as climate  change can  produce variability  and  alterations in  the  

underlying  productivity  of fish  stocks  that  can  have  important impacts on  fisheries and  their  

management (Alheit et  al.,  2009;  Allison  et al.,  2009;  Arnason  2006;  Barange  et  al.,  2014; 

Brander 2007;  Chavez  et al.,  2003;  Cheung  et  al.,  2009;  Erauskin-Extramiana  et al.,  2019;  Merino  

et  al.,  2012). However, we develop  our method  in  the context  of large uncertainty  ensembles of  

models where  only certain  model configurations display trends in  recruitment.  Should  evidence  

of the impact of factors not considered  in  stock assessments be  available,  these factors  would  

need  to  be  included in  the  stock assessment, which  is possible  in  integrated  models. However,  

systematic examination  is necessary  to  assume stock  productivity  shifts in  stock assessments  

(Klaer et  al., 2015). Also, such evidence of regime shifts and  changes in  productivity  should  be  

used to  calculate  fish  stocks productivity  (in  this  case R0) in  the different  years of  the  stock  

assessment  period. With this, the  reference  points used to  provide management advice would  

also be adapted  to  the inferred changes in  the productivity  of the stocks.  

We  used data generated  from  a simulated population  to  see if our method  is able to  identify  

problems with model  configurations that are  intentionally  incorporated  as  bias in  natural  

mortality  and  growth. Natural mortality  is one of the least well-understood  population  
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processes included in  stock assessments  and  the trends observed in  the Atlantic bigeye  

assessment (Figure SI3A) suggest  that changes in  this parameter would  be sufficient to  provide  

trends in  recruitment deviates. Figures 8  and  9  show that the expected  trends are  only observed  

for very  large  bias from  the true  value of the simulated  model (±90%).  This was somewhat  

unexpected  because the  assumptions on  M  developed for Atlantic bigeye  include natural  

mortality  reductions of  23% and  37%  respectively  for  the scenarios  M20  and  M25  relative  to  the  

M17  models, and  these changes do  produce trends in  recruitment deviates. However, the trends  

observed  in  the Indian  Ocean yellowfin  assessment were  reproduced and  they  displayed  the  

expected slope, increasing  for low natural mortality  and  decreasing  for large natural  mortality.  

The reasons  for the absence of recruitment  deviates’ trends except for large bias in  M  for  the  

operating  model needs to  be explored  further.  However, there is good  consistency  between  the  

CPUE and  catch data in  the simulated model. The mis-specified natural mortality  produces  

changes in  the overall  productivity  estimate  (e.g.,  R0) but doesn’t affect  the trend  as they  do  in  
the stock assessment, where inconsistencies between abundance indices, catch, size frequency  

and  tagging  data have  been identified  (Fu  et al.,  2021).  The Indian  Ocean yellowfin  stock  

assessment  and  the  operating  model  are  spatially  disaggregated  and,  in  the  past,  trends  in  the  

regional recruitment  distribution  have also  been  encountered  (IOTC 2021). These are shown to  

have been mostly  associated  with trends in  catch distribution  (i.e.,  large increase  of the regional 

recruitment often coincided  with the  high  catch), and  may  also  reflect  model-misspecification  

(e.g.,  the prior assumption  imposed on the regional abundance distribution).   

In  the Indian  Ocean  yellowfin  assessment, we  observed  trends  in  recruitment  deviates in  specific  

model configurations but  not  in  single  factors. For  example,  23  of  24  models with  the low  natural  

mortality  and  Dortel growth (Dortel et  al.,  2014)  combination  display  a trend  in  recruitment  

deviates. However, there  are models  with  the  Dortel growth  combined with  base  natural  

mortality  or models with the low mortality  option  combined with the base growth  curve that  

show  a high  probability  for  the no-trend  hypothesis. This suggests that this method  should  not  

be used to  discard  or  select entire factors from  a  reference grid  but to  identify  problems with  

specific model  configurations (combinations of  factors)  and  eventually,  discard  or  select  

individual models. This also  suggests that the cause  of  the  trends  is probably  not  a single  

parameter but the result of  the combination  of factors  and  possible inconsistencies and  conflict  

between observations.  

Diagnostics can  be used to evaluate model  plausibility  when using  integrated stock assessment  

models (Carvalho  et  al.,  2021).  The  p-value  of  the  no-tend  hypothesis adds to  the statistical tests  

currently applied to  evaluate  model performance and  help  model development and  selection  

when using  ensembles of models to  develop  management advice. The p-value can  identify  

problematic  models that  are not  identified  using  retrospective  analyses,  hindcasting  and  

partially with runs  tests  (Carvalho  et  al.,  2021). Our  results suggest that overall,  models  with  

trends in  recruitment deviates are  linked  with  models with poorer performance in ru ns test  and  

therefore, with models with  residuals to  abundance indices that are not random  (Carvalho  et 

al.,  2017). The  ASPM  diagnostic  has  previously  shown good  power t o  detect misspecification of  

system  dynamics (steepness of  the stock recruitment relationship  and  natural  mortality) and  

confirmation  that stock dynamics are driven by  stock’s production  function  (Carvalho  et  al.,  

2017;  Minte-Vera et al.,  2017). Our  results  indicate  that differences  between  ASPM  and  the  

stock assessment models are linked to autocorrelated recruitment deviates which supports the  

idea that  in  these  models, recruitment  deviates  are  not random  and  represent  part of the stock’s  
response  to  fishing. Finally, our results show  that  trends in  recruitment  deviates are also  

coincident  with larger variability  and  autocorrelation  of recruitment  deviates.  This  also  supports  
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627 the idea  that  process error is not  a random  process  in  many  models  and  furthermore,  it suggests  

that in practice, recruitment deviates do not only explain natural variation but also act as a sink  

to allow fits to observations in mis-specified  models.  

The results of the diagnostic analyses show that no  single diagnostic can  be used  in  isolation,  

and  it is difficult  to  assign  a single criterion  for discarding  or selecting  models.  The  p-value of the  

no-trend  hypothesis  is fast  and  easy  to  calculate  which  makes  it  powerful when  running  stock  

assessments  in  dedicated  meetings with decisions  needed in  a  short time.  Diagnostics as  

developed by  Carvalho  et  al., (2021) have recently  been  used  for model weighting  used to  

develop  management  advice (GFCM, 2021). The  preliminary model weighting  work  done by  

Maunder et  al.  2020  shows that  problems remain  when assigning  weights  to  model according  

to  model diagnostics. Although  it is straightforward  that the models which  perform  better in  

diagnostics should  be given  higher weights,  how to  quantify  weights given various diagnostics  

performance  can  be  subjective  and  controversial. Also,  model  weighting  could  also  include  

expert's opinions  (e.g., regarding  the assumptions  of  steepness in  Maunder et  al 2020). The  

process of translating  expert's opinions into  quantitative weighting  is inherently subjective and  

can  be  problematic. Our  results indicate  that  trends in  recruitment  deviates can  provide  

statistical evidence  to  help  model discard/selection  or quantitative  weighting  when using  large  

ensembles of models. We have used  the p–value  of 0.1  as the threshold to  link  the falsehood  of  

the no-trend  hypothesis for recruitment deviates with the productivity  of stocks and, to  

elucidate  the role of  process error as a random  variable or as part of the intrinsic factors that  

drive  fish  stocks’  response  to  fishing. However,  this  value  is arbitrary.  The  aim  is to  identify  
models that are problematic or mis-specified but we acknowledge that other values could have  

been  used.  In  other words, the low  probability  for  the no-trend  hypothesis  helps  identify  models  

with potential  problems of misspecification  of parameters and  incompatibility  between  

assumptions and data that need  to be investigated.  We recommend that  models  with a p-value  

below  a threshold  are analysed carefully  before selection  for the ensemble of models used to  

develop  management advice.  

In  conclusion,  this study  highlights problems in  the configuration  of tropical tuna  stock  

assessment  models  and  identifies  a  method  to  discard  assumptions  and  model  configurations  

that are  incompatible  with the available information. The investigation  of  recruitment  deviation  

trends provides opportunities to reduce the uncertainty in stock assessments and to contribute  

to  the improvement of the management of fish  and  fishery  resources.  We have based our  

analysis in  the Indian  Ocean  yellowfin  assessment and  other  tropical  tunas,  but  the methodology  

can be extrapolated  to other fisheries.  
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Table Click here to access/download;Table;Tables.docx 

Diagnostic Description 

sd(rec-devs) Standard deviation of the recruitment deviates across the fitting 
period. 

Autocorrelation First order auto-regressive (AR1) autocorrelation coefficient 
recruitment deviates at an annual time step interval. 

RunsTest Runs test for residual analysis (Carvalho and others 2017) applied 
to the abundance indices available for the stock assessment. It 
represents the probability of residuals to be random. If p-values 
larger than 0.05 are considered representative of models with 
random residuals. 

Mohn’s  (B) Mean relative error of the biomass estimate using the full dataset 
and the estimate of sequentially removing years with data 
(Carvalho and others 2017; Carvalho and others 2021; Hurtado-
Ferro and others 2015; Mohn 1999). The closer the value to zero, 
the smaller the retrospective bias.  

Mohn’s  (F) Mean relative error of the fishing mortality estimate using the full 
dataset and the estimate of sequentially removing years with data 
(Carvalho and others 2017; Carvalho and others 2021; Hurtado-
Ferro and others 2015; Mohn 1999). The lower the value, the more 
robust the model. 

MASE Mean absolute scaled error (Hyndman and Koehler 2006). 
Evaluates the prediction skill of a model relative to a naïve baseline 
prediction by scores of the mean absolute error of forecasts 
(prediction residuals) (Carvalho and others 2021). The lower the 
value, the prediction skills of the model are assume better. If the 
MASE is smaller than one, the model is considered to have 
prediction skill. 

MSY (ASPM-SA) Difference in the estimated Maximum Sustainable Yield (MSY) as a 
measure of productivity between the stock assessment (SA) models 
and equivalent runs without recruitment deviates and using only 
catch and effort data (ASPM). 

R0 (ASPM-SA) Difference in the estimated unfished equilibrium recruitment (R0) 
as a measure of scale between the stock assessment (SA) models 
and equivalent runs without recruitment deviates and using only 
catch and effort data (ASPM). 

Table. 1. Diagnostics used for comparison with the no-trend hypothesis for recruitment deviates. 

https://www.editorialmanager.com/fisheries/download.aspx?id=460953&guid=d84425ef-a654-4b20-8f58-9821001cfb92&scheme=1
https://www.editorialmanager.com/fisheries/download.aspx?id=460953&guid=d84425ef-a654-4b20-8f58-9821001cfb92&scheme=1


 

 

 
 
    

 
     

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

Model name 
p-value 

NoTrend 
sd (rec-
devs) Autocorrelation RunsTest 

Mohn's rho 
(B) Mohn's rho (F) MASE MSY (ASPM-SA) R0 (ASPM-SA) 

io_h70_q1_Gbase_Mbase_tlambda01 0.165 0.377 0.263 0.082 0.123 0.360 1.080 0.059 0.056 

io_h70_q1_Gbase_Mbase_tlambda1 0.825 0.395 0.253 0.156 0.084 0.220 1.030 0.030 0.006 

io_h70_q1_Gbase_Mlow_tlambda01 0.655 0.392 0.189 0.049 0.137 0.391 1.085 0.031 0.009 

io_h70_q1_Gbase_Mlow_tlambda1 0.007 0.425 0.271 0.053 0.114 0.259 1.067 0.119 0.067 

io_h70_q1_GDortel_Mbase_tlambda01 0.337 0.458 0.428 0.074 NA NA NA 0.129 0.056 

io_h70_q1_GDortel_Mbase_tlambda1 0.108 0.473 0.405 0.099 0.073 0.251 1.011 0.120 0.078 

io_h70_q1_GDortel_Mlow_tlambda01 0.001 0.536 0.546 0.030 0.016 0.252 1.093 0.167 0.150 

io_h70_q1_GDortel_Mlow_tlambda1 0.001 0.568 0.574 0.045 0.112 0.172 1.031 0.183 0.183 

io_h70_q2_Gbase_Mbase_tlambda01 0.610 0.367 0.241 0.118 0.087 0.319 1.054 0.016 0.026 

io_h70_q2_Gbase_Mbase_tlambda1 0.272 0.393 0.249 0.134 0.102 0.328 1.037 0.071 0.019 

io_h70_q2_Gbase_Mlow_tlambda01 0.228 0.394 0.221 0.100 0.128 0.343 1.084 0.084 0.017 

io_h70_q2_Gbase_Mlow_tlambda1 0.004 0.434 0.299 0.039 0.143 0.351 1.068 0.158 0.084 

io_h70_q2_GDortel_Mbase_tlambda01 0.049 0.462 0.421 0.143 0.084 0.343 1.035 0.145 0.074 

io_h70_q2_GDortel_Mbase_tlambda1 0.078 0.485 0.442 0.098 0.050 0.315 1.023 0.182 0.109 

io_h70_q2_GDortel_Mlow_tlambda01 0.003 0.557 0.582 0.044 0.085 0.367 1.030 0.235 0.189 

io_h70_q2_GDortel_Mlow_tlambda1 0.000 0.598 0.592 0.045 0.083 0.312 1.050 0.264 0.224 

io_h80_q1_Gbase_Mbase_tlambda01 0.052 0.383 0.302 0.062 0.100 0.339 1.045 0.050 0.052 

io_h80_q1_Gbase_Mbase_tlambda1 0.757 0.387 0.242 0.156 0.080 0.213 1.029 0.003 0.017 

io_h80_q1_Gbase_Mlow_tlambda01 0.956 0.389 0.191 0.049 0.127 0.375 1.075 0.014 0.017 

io_h80_q1_Gbase_Mlow_tlambda1 0.054 0.411 0.231 0.048 0.123 0.202 1.082 0.104 0.046 

io_h80_q1_GDortel_Mbase_tlambda01 0.931 0.453 0.386 0.073 0.030 0.246 1.035 0.069 0.022 

io_h80_q1_GDortel_Mbase_tlambda1 0.316 0.464 0.396 0.099 0.067 0.220 0.997 0.106 0.063 

io_h80_q1_GDortel_Mlow_tlambda01 0.009 0.527 0.536 0.031 0.042 0.249 1.048 0.226 0.130 

io_h80_q1_GDortel_Mlow_tlambda1 0.005 0.547 0.547 0.046 0.003 0.286 1.093 0.188 0.169 

io_h80_q2_Gbase_Mbase_tlambda01 0.300 0.366 0.244 0.147 0.067 0.350 1.053 0.020 0.026 

io_h80_q2_Gbase_Mbase_tlambda1 0.545 0.390 0.263 0.170 0.119 0.038 1.052 0.062 0.015 

io_h80_q2_Gbase_Mlow_tlambda01 0.235 0.385 0.210 0.073 0.126 0.375 1.086 0.062 0.010 

io_h80_q2_Gbase_Mlow_tlambda1 0.005 0.423 0.277 0.039 0.088 0.347 1.070 0.151 0.073 

io_h80_q2_GDortel_Mbase_tlambda01 0.115 0.454 0.412 0.143 0.034 0.314 1.048 0.134 0.064 



 

 

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

io_h80_q2_GDortel_Mbase_tlambda1 0.140 0.478 0.429 0.102 0.089 0.407 1.036 0.168 0.094 

io_h80_q2_GDortel_Mlow_tlambda01 0.000 0.544 0.570 0.043 0.188 0.564 1.030 0.243 0.179 

io_h80_q2_GDortel_Mlow_tlambda1 0.000 0.579 0.586 0.072 0.043 0.293 1.036 0.277 0.217 

io_h90_q1_Gbase_Mbase_tlambda01 0.012 0.387 0.284 0.082 0.080 0.331 1.049 0.072 0.051 

io_h90_q1_Gbase_Mbase_tlambda1 0.471 0.389 0.230 0.157 0.083 0.197 1.017 0.020 0.020 

io_h90_q1_Gbase_Mlow_tlambda01 0.570 0.389 0.186 0.048 0.143 0.416 1.078 0.000 0.022 

io_h90_q1_Gbase_Mlow_tlambda1 0.082 0.408 0.233 0.061 0.114 0.247 1.081 0.113 0.050 

io_h90_q1_GDortel_Mbase_tlambda01 0.597 0.454 0.389 0.073 0.079 0.243 1.055 0.042 0.010 

io_h90_q1_GDortel_Mbase_tlambda1 0.694 0.463 0.408 0.085 0.074 0.233 1.010 0.109 0.062 

io_h90_q1_GDortel_Mlow_tlambda01 0.002 0.520 0.546 0.031 0.099 0.399 1.079 0.212 0.169 

io_h90_q1_GDortel_Mlow_tlambda1 0.004 0.531 0.528 0.070 0.070 0.280 1.041 0.193 0.152 

io_h90_q2_Gbase_Mbase_tlambda01 0.240 0.367 0.243 0.120 0.093 0.321 1.030 0.023 0.026 

io_h90_q2_Gbase_Mbase_tlambda1 0.847 0.397 0.235 0.151 0.033 0.323 1.008 0.049 0.028 

io_h90_q2_Gbase_Mlow_tlambda01 0.288 0.383 0.196 0.073 0.286 0.677 1.072 0.046 0.005 

io_h90_q2_Gbase_Mlow_tlambda1 0.013 0.413 0.257 0.038 0.098 0.305 1.055 0.138 0.061 

io_h90_q2_GDortel_Mbase_tlambda01 0.187 0.449 0.403 0.159 0.049 0.356 1.059 0.120 0.056 

io_h90_q2_GDortel_Mbase_tlambda1 0.166 0.485 0.419 0.106 0.060 0.337 1.028 0.162 0.094 

io_h90_q2_GDortel_Mlow_tlambda01 0.001 0.535 0.561 0.062 0.024 0.280 1.011 0.279 0.197 

io_h90_q2_GDortel_Mlow_tlambda1 0.001 0.559 0.570 0.037 0.045 0.218 1.009 0.281 0.202 

sp_h70_q1_Gbase_Mbase_tlambda01 0.073 0.371 0.188 0.016 0.132 0.078 1.092 0.084 0.040 

sp_h70_q1_Gbase_Mbase_tlambda1 0.420 0.400 0.227 0.115 0.169 0.307 1.093 0.035 0.035 

sp_h70_q1_Gbase_Mlow_tlambda01 0.774 0.386 0.172 0.035 NA NA NA 0.030 0.013 

sp_h70_q1_Gbase_Mlow_tlambda1 0.153 0.423 0.254 0.049 0.176 0.380 1.090 0.161 0.044 

sp_h70_q1_GDortel_Mbase_tlambda01 0.953 0.452 0.403 0.072 0.148 0.344 1.081 0.089 0.002 

sp_h70_q1_GDortel_Mbase_tlambda1 0.997 0.481 0.432 0.032 0.140 0.369 1.084 0.097 0.028 

sp_h70_q1_GDortel_Mlow_tlambda01 0.012 0.514 0.535 0.017 0.162 0.355 1.070 0.201 0.132 

sp_h70_q1_GDortel_Mlow_tlambda1 0.050 0.537 0.551 0.010 0.109 0.319 1.147 0.246 0.163 

sp_h70_q2_Gbase_Mbase_tlambda1 0.866 0.408 0.244 0.022 0.113 0.236 1.076 0.008 0.021 

sp_h70_q2_Gbase_Mlow_tlambda01 0.096 0.393 0.198 0.021 NA NA NA 0.092 0.028 

sp_h70_q2_Gbase_Mlow_tlambda1 0.075 0.434 0.269 0.018 NA NA NA 0.168 0.078 

sp_h70_q2_GDortel_Mbase_tlambda01 0.131 0.448 0.405 0.037 0.116 0.312 1.096 0.143 0.066 



 

 

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

sp_h70_q2_GDortel_Mbase_tlambda1 0.558 0.476 0.410 0.019 0.081 0.300 1.058 0.100 0.050 

sp_h70_q2_GDortel_Mlow_tlambda01 0.000 0.550 0.581 0.013 0.172 0.454 1.086 0.292 0.189 

sp_h70_q2_GDortel_Mlow_tlambda1 0.000 0.594 0.585 0.006 0.081 0.443 1.056 0.323 0.245 

sp_h80_q1_Gbase_Mbase_tlambda01 0.039 0.375 0.186 0.016 0.131 0.063 1.132 0.091 0.037 

sp_h80_q1_Gbase_Mbase_tlambda1 0.399 0.386 0.222 0.067 0.152 0.256 1.072 0.042 0.031 

sp_h80_q1_Gbase_Mlow_tlambda01 0.875 0.383 0.161 0.035 0.203 0.450 1.086 0.002 0.019 

sp_h80_q1_Gbase_Mlow_tlambda1 0.321 0.415 0.229 0.068 NA NA NA 0.123 0.023 

sp_h80_q1_GDortel_Mbase_tlambda01 0.797 0.450 0.392 0.026 0.107 0.254 1.192 0.017 0.021 

sp_h80_q1_GDortel_Mbase_tlambda1 0.737 0.473 0.409 0.027 0.110 0.342 1.060 0.062 0.003 

sp_h80_q1_GDortel_Mlow_tlambda01 0.013 0.500 0.521 0.012 0.159 0.294 1.244 0.233 0.133 

sp_h80_q1_GDortel_Mlow_tlambda1 0.086 0.521 0.526 0.010 0.107 0.293 1.089 0.244 0.151 

sp_h80_q2_Gbase_Mbase_tlambda01 0.393 0.370 0.167 0.019 0.114 0.180 1.069 0.038 0.022 

sp_h80_q2_Gbase_Mbase_tlambda1 0.491 0.403 0.244 0.018 0.113 0.216 1.126 0.021 0.023 

sp_h80_q2_Gbase_Mlow_tlambda01 0.119 0.390 0.169 0.016 0.169 0.410 1.143 0.072 0.018 

sp_h80_q2_Gbase_Mlow_tlambda1 0.077 0.425 0.253 0.022 0.136 0.399 1.140 0.136 0.054 

sp_h80_q2_GDortel_Mbase_tlambda01 0.072 0.451 0.415 0.033 0.137 0.476 1.063 0.135 0.067 

sp_h80_q2_GDortel_Mbase_tlambda1 0.991 0.474 0.406 0.019 0.097 0.316 1.080 0.056 0.029 

sp_h80_q2_GDortel_Mlow_tlambda01 0.001 0.539 0.569 0.015 NA NA NA 0.293 0.179 

sp_h80_q2_GDortel_Mlow_tlambda1 0.002 0.577 0.573 0.006 0.070 0.397 1.057 0.335 0.234 

sp_h90_q1_Gbase_Mbase_tlambda01 0.010 0.379 0.197 0.016 0.060 -0.165 1.117 0.088 0.033 

sp_h90_q1_Gbase_Mbase_tlambda1 0.141 0.400 0.232 0.085 0.071 0.131 1.070 0.069 0.034 

sp_h90_q1_Gbase_Mlow_tlambda01 0.670 0.379 0.148 0.035 NA NA NA 0.013 0.021 

sp_h90_q1_Gbase_Mlow_tlambda1 0.487 0.405 0.207 0.065 0.177 0.358 1.097 0.087 0.015 

sp_h90_q1_GDortel_Mbase_tlambda01 0.516 0.437 0.371 0.019 0.128 0.201 1.035 0.022 0.002 

sp_h90_q1_GDortel_Mbase_tlambda1 0.553 0.469 0.411 0.032 0.112 0.297 1.053 0.048 0.007 

sp_h90_q1_GDortel_Mlow_tlambda01 0.055 0.492 0.510 0.014 0.082 0.223 1.249 0.229 0.121 

sp_h90_q1_GDortel_Mlow_tlambda1 0.166 0.512 0.523 0.010 0.100 0.308 1.114 0.233 0.143 

sp_h90_q2_Gbase_Mbase_tlambda01 0.195 0.370 0.159 0.015 0.140 0.182 1.054 0.039 0.023 

sp_h90_q2_Gbase_Mbase_tlambda1 0.287 0.403 0.244 0.018 0.110 0.300 1.106 0.028 0.022 

sp_h90_q2_Gbase_Mlow_tlambda01 0.209 0.386 0.171 0.021 0.163 0.350 1.145 0.054 0.011 

sp_h90_q2_Gbase_Mlow_tlambda1 0.229 0.422 0.243 0.014 0.151 0.394 1.124 0.131 0.050 



 

 

          

          

          

          
  

 

 

 

sp_h90_q2_GDortel_Mbase_tlambda01 0.079 0.448 0.404 0.024 0.152 0.391 1.073 0.120 0.058 

sp_h90_q2_GDortel_Mbase_tlambda1 0.770 0.467 0.399 0.025 0.024 0.271 1.063 0.093 0.022 

sp_h90_q2_GDortel_Mlow_tlambda01 0.001 0.530 0.551 0.010 0.142 0.487 1.122 0.274 0.163 

sp_h90_q2_GDortel_Mlow_tlambda1 0.005 0.566 0.552 0.005 0.121 0.401 1.016 0.328 0.214 
Table. 2. Performance of the 2021 stock assessment models estimated through diagnostics. 
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Figure 1. Catch history of tropical tunas (bigeye, yellowfin and skipjack) in the Atlantic Ocean 

(AO), Eastern Pacific Ocean (EPO), Indian Ocean (IO) and Western Central Pacific Ocean (WCPO). 

Figure 2. Recruitment deviates for the 96 models of the Indian Ocean yellowfin stock assessment 

of 2021 (Fu et al., 2021). Scenarios with a p-value of the no-trend test lower than 0.1 are 

identified in purple (increasing trend) and blue (decreasing trend). Lines represent a linear 

regression to the recruitment deviates. 

Figure 3. Estimated Maximum Sustainable Yield (MSY) for the 96 models of the Indian Ocean 

yellowfin stock assessment (Fu et al., 2021) and p-value of the no-trend hypothesis. Scenarios 

with a p-value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and 

blue (decreasing trend). 

Figure 4. Differences in % of MSY between the models of the Indian Ocean yellowfin stock 

assessment of 2021 (Fu et al., 2021) (SA) and their equivalent models with the recruitment 

deviates option deactivated (RecDev0) and, p-value of the no-trend hypothesis. Scenarios with 

a p-value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and blue 

(decreasing trend). 

Figure 5. Differences in virgin recruitment (% of R0) between the models of the Indian Ocean 

yellowfin stock assessment of 2021 (Fu et al., 2021) (SA) and their equivalent models with the 

recruitment deviates option deactivated (RecDev0) and, and p-value of the no-trend hypothesis. 

Scenarios with a p-value of the no-trend test lower than 0.1 are identified in purple (increasing 

trend) and blue (decreasing trend). 

Figure 6. Differences in the estimated relative biomass trajectory (B/Bmsy) between the models 

of the Indian Ocean yellowfin stock assessment of 2021 (Fu et al., 2021) (continuous line) and 

their equivalent models with the recruitment deviates option deactivated (RecDev0, dashed 

line). Scenarios with a p-value of the no-trend test lower than 0.1 are identified in purple 

(increasing trend) and blue (decreasing trend). 

Figure 7. Differences in the estimated relative biomass (%B/Bmsy) between the models of the 

Indian Ocean yellowfin stock assessment of 2021 (Fu et al., 2021) (SA) and their equivalent 

models with the recruitment deviates option deactivated (RecDev0) and, and p-value of the no-

trend hypothesis. Scenarios with a p-value of the no-trend test lower than 0.1 are identified in 

purple (increasing trend) and blue (decreasing trend). 

Figure 8. Comparison of process error trends with standard model diagnostics. Red: Models with 

trends in recruitment deviates (p-value<0.1); green: Models without trends in recruitment 

deviates (p-value>0.1). 

Figure 9. Correlation between the diagnostics developed in Carvalho et al (2021) and the p-value 

of the no-trend hypothesis for recruitment deviates. The diagnostics include convergence, 

likelihood, RMSE (Root mean square error), MASE (Mean average square error) and differences 

between the stock assessment estimates of MSY and R0 with their corresponding Age Structured 

Production Models (ASPM). 

Figure 10. Recruitment deviates for the 26 models of the simulated Indian Ocean yellowfin 

operating model (Dunn and others 2020). Columns reflect % changes in the fixed natural 

mortality (e.g. M010 describes M as 10% of the M in the base case (M100)). Scenarios with a p-

https://www.editorialmanager.com/fisheries/download.aspx?id=460972&guid=70660f67-252d-44b2-a571-df2b82efa312&scheme=1
https://www.editorialmanager.com/fisheries/download.aspx?id=460972&guid=70660f67-252d-44b2-a571-df2b82efa312&scheme=1


           

    

         

       

   

         

  

          

        

    

 

         

          

           

 

       

      

           

  

        

          

           

 

     

            

           

  

       

          

           

 

         

        

          

  

          

           

           

 

          

         

value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and blue 

(decreasing trend). Lines represent a linear regression to the recruitment deviates. 

Figure 11. Differences in % of MSY between the simulated Indian Ocean yellowfin operating 

model (Dunn and others 2020) (OM) and their equivalent models with the recruitment deviates 

option deactivated (RecDev0) and, p-value of the no-trend hypothesis. Scenarios with a p-value 

of the no-trend test lower than 0.1 are identified in purple (increasing trend) and blue 

(decreasing trend). 

Figure 12. Projection of fishing mortality from the 96 models of the assessment of Indian Ocean 

yellowfin (Fu and others 2021; Urtizberea and others 2021). Dotted black line represents the 

median trajectory, dashed blue line indicates FMSY and dashed red line indicates the limit fishing 

mortality (Flim=1.4xFMSY). 

Figure SI1A. Recruitment deviates for the 26 models of the Indian Ocean skipjack stock 

assessment of 2020. Scenarios with a p-value of the no-trend test lower than 0.1 are identified 

in purple (increasing trend) and blue (decreasing trend). Lines represent a linear regression to 

the recruitment deviates. 

Figure SI1B. Estimated Maximum Sustainable Yield (MSY) for the 26 models of the Indian Ocean 

skipjack stock assessment of 2020 and p-value of the no-trend hypothesis. Scenarios with a p-

value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and blue 

(decreasing trend). 

Figure SI2A. Recruitment deviates for the 18 models of the Indian Ocean bigeye stock 

assessment of 2019. Scenarios with a p-value of the no-trend test lower than 0.1 are identified 

in purple (increasing trend) and blue (decreasing trend). Lines represent a linear regression to 

the recruitment deviates. 

Figure SI2B. Estimated Maximum Sustainable Yield (MSY) for the 18 models of the Indian Ocean 

bigeye stock assessment of 2019 and p-value of the no-trend hypothesis. Scenarios with a p-

value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and blue 

(decreasing trend). 

Figure SI3A. Recruitment deviates for the 27 models of the Atlantic Ocean bigeye stock 

assessment of 2021. Scenarios with a p-value of the no-trend test lower than 0.1 are identified 

in purple (increasing trend) and blue (decreasing trend). Lines represent a linear regression to 

the recruitment deviates. 

Figure SI3B. Estimated Maximum Sustainable Yield (MSY) for the 27 models of the Atlantic 

Ocean bigeye stock assessment of 2021 and p-value of the no-trend hypothesis. Scenarios with 

a p-value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and blue 

(decreasing trend). 

Figure SI4A. Recruitment deviates for the 4 models of the Atlantic Ocean yellowfin stock 

assessment of 2019. Scenarios with a p-value of the no-trend test lower than 0.1 are identified 

in purple (increasing trend) and blue (decreasing trend). Lines represent a linear regression to 

the recruitment deviates. 

Figure SI4B. Estimated Maximum Sustainable Yield (MSY) for the 4 models of the Atlantic Ocean 

yellowfin stock assessment of 2019 and p-value of the no-trend hypothesis. Scenarios with a p-



           

  

            

          

          

 

             

        

          

  

      

          

           

 

             

       

       

 

           

      

      

 

          

       

       

 

          

      

      

 

          

       

      

 

      

      

      

 

          

       

      

 

value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and blue 

(decreasing trend). 

Figure SI5A. Recruitment deviates for the 44 models of the East Pacific Ocean bigeye stock 

assessment of 2021. Scenarios with a p-value of the no-trend test lower than 0.1 are identified 

in purple (increasing trend) and blue (decreasing trend). Lines represent a linear regression to 

the recruitment deviates. 

Figure SI5B. Estimated Maximum Sustainable Yield (MSY) for the 44 models of the East Pacific 

Ocean bigeye stock assessment of 2021 and p-value of the no-trend hypothesis. Scenarios with 

a p-value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and blue 

(decreasing trend). 

Figure SI6A. Recruitment deviates for the 48 models of the East Pacific Ocean yellowfin stock 

assessment of 2020. Scenarios with a p-value of the no-trend test lower than 0.1 are identified 

in purple (increasing trend) and blue (decreasing trend). Lines represent a linear regression to 

the recruitment deviates. 

Figure SI6B. Estimated Maximum Sustainable Yield (MSY) for the 48 models of the East Pacific 

Ocean yellowfin stock assessment of 2020 and p-value of the no-trend hypothesis. Scenarios 

with a p-value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and 

blue (decreasing trend). 

Figure SI7A. Recruitment deviates for the 24 models of the West Central Pacific Ocean bigeye 

stock assessment of 2021. Scenarios with a p-value of the no-trend test lower than 0.1 are 

identified in purple (increasing trend) and blue (decreasing trend). Lines represent a linear 

regression to the recruitment deviates. 

Figure SI7B. Estimated Maximum Sustainable Yield (MSY) for the 24 models of the West Central 

Pacific Ocean bigeye stock assessment of 2021 and p-value of the no-trend hypothesis. Scenarios 

with a p-value of the no-trend test lower than 0.1 are identified in purple (increasing trend) and 

blue (decreasing trend). 

Figure SI8A. Recruitment deviates for the 72 models of the West Central Pacific Ocean yellowfin 

stock assessment of 2021. Scenarios with a p-value of the no-trend test lower than 0.1 are 

identified in purple (increasing trend) and blue (decreasing trend). Lines represent a linear 

regression to the recruitment deviates. 

Figure SI8B. Estimated Maximum Sustainable Yield (MSY) for the 72 models of the West Central 

Pacific Ocean yellowfin stock assessment of 2021 and p-value of the no-trend hypothesis. 

Scenarios with a p-value of the no-trend test lower than 0.1 are identified in purple (increasing 

trend) and blue (decreasing trend). 

Figure SI9A. Recruitment deviates for the 63 models of the West Central Pacific Ocean skipjack 

stock assessment of 2019. Scenarios with a p-value of the no-trend test lower than 0.1 are 

identified in purple (increasing trend) and blue (decreasing trend). Lines represent a linear 

regression to the recruitment deviates. 

Figure SI9B. Estimated Maximum Sustainable Yield (MSY) for the 63 models of the West Central 

Pacific Ocean skipjack stock assessment of 2019 and p-value of the no-trend hypothesis. 

Scenarios with a p-value of the no-trend test lower than 0.1 are identified in purple (increasing 

trend) and blue (decreasing trend). 
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